# <span id="page-0-1"></span><span id="page-0-0"></span>Mathematics (for Physics) for Biologists

#### Melanie I Stefan, University of Edinburgh

OIST

July 2015



R. Munroe, Purity, web comic, June 2008

## Thinking about numbers

- <span id="page-2-0"></span>• How many piano tuners are there in New York City?
- Is it true that there are more connections in the human brain than atoms in the universe?
- Why did deaths from iron poisoning in small children in the US drop dramatically after 1998?
- $\bullet$  Is it true that we use only 10% of our brain?
- $\bullet$  How much does it cost to set up a C. elegans lab and run it for a year?
- How many different coffees can you have at Starbucks?

## Looking at equations

<span id="page-3-0"></span>Michaelis-Menten kinetics

$$
v = \frac{V_{\text{max}}[S]}{K_{\text{M}} + [S]}
$$

v . . . reaction rate

vmax . . . maximal rate

$$
[S] \qquad \ldots \qquad \text{substrate concentration}
$$

 $K_{\text{M}}$  ... Michaelis constant

## Questions to ask when looking at equations

### Questions to ask when looking at equations

- What do the terms mean? Which of them are constant, which ones are variable?
- How does the whole change when your variable of interest changes? What is the shape of the curve?
- What are the extremes? Can this ever be less than zero/zero/infinitely big/not defined?
- What happens in "special cases" (e.g. your variable of interest is zero, infinity,  $\ldots$ )?
- What can I measure?
- Why do I care?

## Looking at equations

Drake equation:

$$
N = R_* \cdot f_p \cdot n_e \cdot f_\ell \cdot f_i \cdot f_c \cdot L
$$

- N . . . number of civilizations in our galaxy with which radio-communication might be possible
- $R^*$  ... average rate of star formation in our galaxy
- fp . . . fraction of those stars that have planets
- ne . . . average number of planets that can potentially support life per star that has planets
- fl . . . fraction of planets that could support life that actually develop life at some point
- fi . . . fraction of planets with life that actually go on to develop intelligent life (civilizations)
- fc . . . fraction of civilizations that develop a technology that releases detectable signs of their existence into space
- L ... length of time for which such civilizations release detectable signals into space

## Looking at equations

Munz model:

$$
S' = \Pi - \beta SZ - \delta S
$$

$$
Z' = \beta SZ + \zeta R - \alpha SZ
$$

$$
R' = \delta S + \alpha SZ - \zeta R
$$



P. Munz et al., In: J.M. Tchuenche and C. Chiyaka, editors, Infectious Disease Modelling Research Progress (Nova Science, 2009), pp. 133–150

### Choose your own adventure

- <span id="page-8-0"></span>• Thinking about numbers  $\bullet$  [Go](#page-2-0)
- $\bullet$  Thinking about equations  $\bullet$  [Go](#page-3-0)
- $\bullet$  Differential and integral calculus  $\bullet$  [Go](#page-0-1)
- **o** Differential equations  $\bullet$  [Go](#page-18-0)
- **o** Matrix operations  $\bullet$  [Go](#page-34-0)
- $\bullet$  Combinatorics  $\bullet$  [Go](#page-43-0)

$$
\frac{d}{dx}(x^2+3x+4)
$$

$$
\frac{d}{dx}(x^2 + 3x + 4)
$$

$$
\frac{d}{dx}(e^x)
$$

$$
\frac{d}{dx}(x^{2} + 3x + 4)
$$

$$
\frac{d}{dx}(e^{x})
$$

$$
\frac{d}{dx}\sin(x)
$$

$$
\frac{d}{dx}(x^{2} + 3x + 4)
$$
\n
$$
\frac{d}{dx}(e^{x})
$$
\n
$$
\frac{d}{dx}\sin(x)
$$
\n
$$
\frac{d}{dx}x^{2}\cos(x)
$$

$$
\frac{d}{dx}(x^{2} + 3x + 4)
$$
\n
$$
\frac{d}{dx}(e^{x})
$$
\n
$$
\frac{d}{dx}\sin(x)
$$
\n
$$
\frac{d}{dx}x^{2}\cos(x)
$$
\n
$$
\frac{d}{dx}e^{x^{2}}
$$

 $\int (x^2 + 3x + 4) dx$ 

 $\int (x^2 + 3x + 4) dx$  $\int e^x dx$ 

$$
\int (x^2 + 3x + 4) dx
$$

$$
\int e^x dx
$$

$$
\int \frac{1}{x} dx
$$

$$
\int (x^{2} + 3x + 4) dx
$$

$$
\int e^{x} dx
$$

$$
\int \frac{1}{x} dx
$$

$$
\int (\sin x)(\cos x) dx
$$

 $\triangleright$  [On to differential equations](#page-18-0)  $\triangleright$  [Back to overview](#page-8-0)

### <span id="page-18-0"></span>Differential equations



### Differential equations

### $\overline{k}$ AB  $A + B$

## Chemical reactions

$$
\frac{d[A]}{dt} = -k[A][B]
$$

$$
\frac{d[B]}{dt} = \frac{d[A]}{dt} = -k[A][B]
$$

$$
\frac{d[AB]}{dt} = k[A][B]
$$

# Chemical reactions

$$
\frac{d[A]}{dt} = -k[A][B]
$$

$$
\int \frac{1}{[A]} d[A] = -\int k[B]dt
$$

$$
\log[A] = -k[B]t + c_0
$$

$$
[A] = c_1 e^{-k[B]t}
$$
At  $t = 0$ ,  $[A] = [A]_0$  and  $e^{-k[B]t} = 1$ . Hence:
$$
[A] = [A]_0 e^{-k[B]t}
$$

## What's this model?

## What's this model?

$$
\frac{dx}{dt} = \alpha x - \beta xy
$$

$$
\frac{dy}{dt} = \delta xy - \gamma y
$$

## What's this model?

$$
\frac{dx}{dt} = \alpha x - \beta xy
$$

$$
\frac{dy}{dt} = \delta xy - \gamma y
$$



#### Lotka-Volterra-Model

### Now that we have talked about ODEs . . .

Don't specify your ODEs by hand.

### Now that we have talked about ODEs . . .

• Don't specify your ODEs by hand. It's tedious and error-prone.

### Now that we have talked about ODEs . . .

- Don't specify your ODEs by hand. It's tedious and error-prone.
- Don't solve your ODEs yourself.

### Now that we have talked about ODEs

- Don't specify your ODEs by hand. It's tedious and error-prone.
- Don't solve your ODEs yourself. Your computer will do it.

### Now that we have talked about ODEs ...

- Don't specify your ODEs by hand. It's tedious and error-prone.
- Don't solve your ODEs yourself. Your computer will do it.
- Your computer probably won't.

### Now that we have talked about ODEs

- Don't specify your ODEs by hand. It's tedious and error-prone.
- Don't solve your ODEs yourself. Your computer will do it.
- Your computer probably won't. It will use numerical approximations.

### Euler's method

- Start at initial condition.
- Compute the slope there.
- Follow the slope for "a little bit".
- Compute the slope again.
- Follow the slope for "a little bit" again.
- $\bullet$  And so on ...

### Euler's method

- Start at initial condition.
- Compute the slope there.
- Follow the slope for "a little bit".
- Compute the slope again.
- Follow the slope for "a little bit" again.
- $\bullet$  And so on  $\dots$

$$
\frac{d[A]}{dt} = -k[A][B]
$$

Let's say  $[A]_0 = [B]_0 = 10 \,\mu$ M,  $k = 0.01$ .

## Euler's method

Copasi Demo



#### S. Hoops et al., Bioinformatics 22, 3067–3074 (Dec. 2006)

▶ [Back to overview](#page-8-0)

<span id="page-34-0"></span>Addition:

$$
\left(\begin{array}{cc}1 & 5\\7 & 2\end{array}\right)+\left(\begin{array}{cc}1 & 3\\-4 & 3\end{array}\right)=
$$

Scalar product:

$$
5\times\left(\begin{array}{rrr}1 & 1 & 0 \\ 2 & 2 & -1 \\ 4 & 0.2 & 1\end{array}\right)=
$$

Dot product:

$$
\left(\begin{array}{rrr}2&1&0\\-2&1&2\end{array}\right)\cdot\left(\begin{array}{rrr}1&3&-2\\-1&2&-1\end{array}\right)=
$$

Dot product:

$$
\left(\begin{array}{rrr}2 & 1 & 0\\-2 & 1 & 2\end{array}\right)\cdot \left(\begin{array}{rrr}1 & 3 & -2\\-1 & 2 & -1\end{array}\right)
$$

Matrix product:

$$
\left(\begin{array}{rrr} -2 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array}\right) \times \left(\begin{array}{rrr} 1 & 3 & -2 \\ -1 & 2 & -1 \\ 1 & 2 & 1 \\ 3 & 0 & 1 \end{array}\right)
$$

Matrix product:

$$
\left(\begin{array}{rrr} -2 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array}\right) \times \left(\begin{array}{rrr} 1 & 3 & -2 \\ -1 & 2 & -1 \\ -1 & 2 & 1 \\ 3 & 0 & 1 \end{array}\right)
$$

### Leslie model

Population ecology:

Suppose a certain animal has a maximum life span of three years. The life cycle can be divided into three phases: Year 1 (0-1 yr), Year 2 (1-2 yr), and Year 3 (2-3 yr). We only consider females. A Year 1 female animal has no offspring; a Year 2 female has 3 daughters on the average; and a Year 3 female has an average of 2 daughters. A Year 1 animal has a 0.3 probability of living to Year 2. A Year 2 animal has a 0.4 probability of living to Year 3. Suppose at one instance, the number of Year 1, 2, and 3 females are 2030, 652, and 287, respectively. What is the expected number of females in each category

- a year later?
- two years later?

A. B. Shiflet, G. W. Shiflet, Journal of Computational Science Education (2011)

### Leslie Matrix

$$
\begin{pmatrix}\nn_0 \\
n_1 \\
\vdots \\
n_{\omega-1}\n\end{pmatrix}_{t+1} = \begin{pmatrix}\nf_0 & f_1 & f_2 & \dots & f_{\omega-2} & f_{\omega-1} \\
s_0 & 0 & 0 & \dots & 0 & 0 \\
0 & s_1 & 0 & \dots & 0 & 0 \\
0 & 0 & s_2 & \dots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \dots & s_{\omega-2} & 0\n\end{pmatrix}\n\begin{pmatrix}\nn_0 \\
n_1 \\
\vdots \\
n_{\omega-1}\n\end{pmatrix}_{t}
$$

- $n_i$  ... individuals in age class i
- $f_i$  ... number of female offspring per individual in age class  $i$
- $s_i$  ... chances of surviving to the next age classs

[Back to overview](#page-8-0)

# Dot product: Image filtering

- **O** Decide on a filter matrix
- For each pixel in the image:
	- Take a sub-matrix of the image centered around that pixel (of the same size as the filter matrix)
	- Compute the dot product of that matrix and the filter matrix
	- Replace the value at that pixel by that dot product

# Dot product: Image filtering







<span id="page-43-0"></span> $\bullet$  How many of your ancestors lived 1000 years ago?

## **Combinatorics**

- How many of your ancestors lived 1000 years ago?
- Fragile X syndrome causes loss of function of the X-chromosomal FMRP protein. Around 1 : 4000 males are affected. How many females would you expect to be affected?

## <span id="page-45-0"></span>Combinatorics

- How many of your ancestors lived 1000 years ago?
- Fragile X syndrome causes loss of function of the X-chromosomal FMRP protein. Around 1 : 4000 males are affected. How many females would you expect to be affected?
- CaMKII exists as a dodecamer, where every subunit has 2 possible conformational states, 2 phosphorylation sites, and 2 calmodulin binidng sites. How many different forms of CaMKII are theoretically possible? How many exist in a dendritic spine at any given time?

[Back to overview](#page-8-0)

- R. Munroe, Purity, web comic, June 2008, <https://xkcd.com/688/>. P. Munz, I. Hudea, J. Imad, R. J. Smith, In: J.M. Tchuenche and C. Chiyaka, editors, Infectious Disease Modelling Research Progress (Nova Science, 2009), pp. 133–150.
- S. Hoops et al., Bioinformatics 22, 3067–3074 (Dec. 2006).

A. B. Shiflet, G. W. Shiflet, Journal of Computational Science Education (2011).