Data: What do I do with it?

University of Edinburgh

Melanie I Stefan - mstefan@exseed.ed.ac.uk Based on lecture slides by Iris Oren

December 2016

Getting help

- BMS Stats user forum
- Handbook of Biological Statistics
- Quabinet Wiki
- Lecture slides will be available on http://melaniestefan.net/teaching.html

Learning objectives

Think

- Know how a hpyothesis tests works
- Know examples of hypothesis tests and the ideas behind them
- Critically evaluate approaches to summarising, visualising, interpreting and sharing data

Learning objectives

Think

- Know how a hpyothesis tests works
- Know examples of hypothesis tests and the ideas behind them
- Critically evaluate approaches to summarising, visualising, interpreting and sharing data

Do

- Summarise and share your data
- Run a common hypothesis test
- Get help

Learning objectives

Think

- Know how a hpyothesis tests works
- Know examples of hypothesis tests and the ideas behind them
- Critically evaluate approaches to summarising, visualising, interpreting and sharing data

Do

- Summarise and share your data
- Run a common hypothesis test
- Get help

Feel

- Appreciate the importance of good statistical practice
- Gain confidence in handling datasets

The scientific process

The scientific process

- Question
- Hypothesis
- Experimental design
- Data collection
- Data processing

- Data exploration
- Hypothesis testing
- Interpretation
- Presentation
- Publication

Outline

Describing your data set

- Visualising your dataset
- 3 All hypothesis tests are the same . . .
- 4 . . . but there are different hypothesis tests
- 5 Sample size and experimental design
- 5 Sharing your results

Data exploration: summary statistics

Describing your data: Measure of central tendency

- Mean: average (population mean, μ ; sample mean, \overline{X})
- · Median: halfway of ranked data. Use to describe skewed distributions
- Mode: most common value(s). Use for multimodal data

Data exploration: summary statistics

Describing your data: Measure of central tendency

- Mean: average (population mean, μ ; sample mean, \overline{X})
- · Median: halfway of ranked data. Use to describe skewed distributions
- Mode: most common value(s). Use for multimodal data

Describing your data set

Data exploration: summary statistics

Describing your data: Measure of variability

Range

- Smallest to largest values
- Sensitive to extreme values

Describing your data set

Data exploration: summary statistics

Describing your data: Measure of variability for median - IQR

Firing rate X- (Hz)	Sort	Firing rate X- (Hz)	
22.28		15.06	
21		18.25	Q1: 25% of data below
18.97		18.97	Madian 02-10 095
15.06		21	Median Q2-19.985
18.25		21.93	Q3: 25% of data above
21.93		22.28	
Interquarti	ile range (IQR): (Q3-Q1 • •	Should be quoted with median (median is Q2) Independent of distribution Not necessarily symmetrical about median

Outline

- Describing your data set
- 2 Visualising your dataset
 - 3) All hypothesis tests are the same . . .
 - 4 . . . but there are different hypothesis tests
 - 5 Sample size and experimental design
 - 5 Sharing your results

How to represent data?

Weissgerber, 2015

Discussing graphics choices

Discussing graphics choices

- What do the axes show? What are the units? Where is the origin?
- How are colours and patterns used? For instance, what is the experimental condition, what is the control?
- What do symbols on the plot represent? If they represent aggregate data (e.g. mean, median, standard error), how many data points are represented by one symbol in the plot?
- What is the "message" you get from the plot?
- If the data is represented in a novel or unusual way, do you understand what it is you are looking at?
- Is there something about the representation you particularly like/dislike? Is there something that could be improved?

Fernandez-Ruiz, 1999

Figure 1. Median response latencies in the Stroop task for young and old adults as a function of stimulus congruency and color-word integration. Error bars represent one standard error.

West, 1997

Stefan, 2015

Perk, 2015

Fushiki, 2013

Visualising your dataset

Amaral, 2014

A

Schwabe, 2014

mstefan@exseed.ed.ac.uk

Outline

- Describing your data set
- Visualising your dataset
- 3 All hypothesis tests are the same . . .
 - ... but there are different hypothesis tests
 - 5 Sample size and experimental design
 - 5 Sharing your results

All hypothesis tests are the same

- I Formulate the Null Hypothesis, alternative hypothesis
- Oesign your experiment and collect data
- S Think about what you would expect if H0 was true.
- Ould your data be explained by the Null Hypothesis?
- Oetermine the probability of your data given H0
- Interpret your p value and make a decision
- Ø Be aware that hypothesis tests are not perfect.

Example

Example

Example: Is there a difference in the incidence of knee injuries between men and women?

• Formulate the Null Hypothesis, alternative hypothesis

Example

- Formulate the Null Hypothesis, alternative hypothesis
- ② Design your experiment and collect data

Example

- I Formulate the Null Hypothesis, alternative hypothesis
- ② Design your experiment and collect data
- Think about what you would expect if H0 was true.

Example

- Is Formulate the Null Hypothesis, alternative hypothesis
- ② Design your experiment and collect data
- S Think about what you would expect if H0 was true.
- Ould your data be explained by the Null Hypothesis?

Example

- Is Formulate the Null Hypothesis, alternative hypothesis
- ② Design your experiment and collect data
- Think about what you would expect if H0 was true.
- Ould your data be explained by the Null Hypothesis?
- Solution Determine the probability of your data given HO

Example

- Is Formulate the Null Hypothesis, alternative hypothesis
- 2 Design your experiment and collect data
- S Think about what you would expect if H0 was true.
- Ould your data be explained by the Null Hypothesis?
- Solution Determine the probability of your data given H0
- Interpret your p value and make a decision

Example

- Is Formulate the Null Hypothesis, alternative hypothesis
- ② Design your experiment and collect data
- S Think about what you would expect if H0 was true.
- Ould your data be explained by the Null Hypothesis?
- Solution Determine the probability of your data given HO
- Interpret your p value and make a decision
- Ø Be aware that hypothesis tests are not perfect.

Outline

- Describing your data set
- 2 Visualising your dataset
- 3) All hypothesis tests are the same
- 4 . . . but there are different hypothesis tests
 - 5 Sample size and experimental design
 - 6 Sharing your results

There are different hypothesis tests!

Why are there different hypothesis tests? And which one should you use? It depends on . . .

There are different hypothesis tests!

Why are there different hypothesis tests? And which one should you use? It depends on ...

- The type of your data
- The question you ask
- Your sample size and distribution
- Other properties of your dataset
- Other factors that shouldn't matter (computer, skill, supervisor, ...)
Types of variables

Types of variables

Dependent variable/Response variable

Data: What do I do with it?

There are different hypothesis tests

Choose your own adventure!

- Compare a mean to a proposed population mean
- Compare two population means
- Compare more than two population means
- Compare proportions of nominal variables 🚥
- Relationships between variables 📭 💿

• . . .

If in doubt, check this website

Done? (> Sample size and experimental design)

Compare a mean to a proposed population mean

- In theory: z-test
- In real life: one-sample t-test
- If you can't do a t-test: permutation test

From histograms to probabilities

Height of 3 million randomly sampled Americans

Normalised smooth curve = probability density function

Total area of pdf = 1

Area under *pdf* gives the probability

Probability that randomly sampled American is between 180 – 185 cm = 11.6% Probability that randomly sampled American is between 130 – 210 cm \approx 100%

mstefan@exseed.ed.ac.uk

Data: What do I do with it?

.. but there are different hypothesis tests

The normal distribution

mstefan@exseed.ed.ac.uk

Data: What do I do with it?

The normal distribution

Willerman et al. (1991) measured brain volume(pixel count) of 40 college students by MRI

Subject	Pixels
01	816932
02	1001121
03	1038437
04	965353
05	951545
06	928799
07	991305
39	930016
40	935863

$\begin{array}{l} \mbox{Mean=908755} \\ \mbox{Standard deviation=72282} \\ \mbox{Let's assume that these are the true population mean } (\mu) \mbox{ and standard deviation } (\sigma) \end{array}$

mstefan@exseed.ed.ac.uk

The normal distribution

Assume that brain volumes of Edinburgh students follows the same distribution, what is the probability that your brain volume is less than 800000 pixels?

http://homepage.stat.uiowa.edu/~mbognar/applets/normal.html

There is a 6.6% probability that your brain volume is less than 800000 pixels

mstefan@exseed.ed.ac.uk

The normal distribution

Normalising the normal distribution: The z-statistic

The brains of college students are normally distributed with mean 908755 and standard deviation 72282 The brain volumes of 14 year old high school students are normally distributed with mean 750000 and standard deviation 100000

Max (14 yrs) has brain volume 850000 pixels. Lisa (21 yrs, college student) has brain volume 990500. Who has the bigger brain relative to their age?

The Z score = number of standard deviations an observation falls above or below the mean.

... but there are different hypothesis tests

The normal distribution

Probabilities of normal distribution

mstefan@exseed.ed.ac.uk

Data: What do I do with it?

Sample statistics

Sample statistics & CLT

Sample statistics & CLT

Central Limit Theorem:

- The distribution of sample means (the sampling distribution) is nearly normal
- The mean of the sampling distribution is approximately equal to the population mean (µ)
- The standard error (the standard deviation of sample means) $= \frac{\sigma}{\sqrt{n}} \approx \frac{s}{\sqrt{n}}$ ٠

SEM estimates variability in sample estimates of mean ٠

Conditions:

- Observations are independent
- Sample size is sufficiently large (>30) ٠
- Distribution is not strongly skewed (but moderate skew allowed if large sample) ٠

CLT also applies to other point estimates (variance, standard deviation)

Confidence interval

We can use the standard error of the mean to **define a confidence interval** for our estimate of the mean

Example

The mean brain volume for the 40 sampled college students was 908755. How confident can we be that our estimate represents the mean brain volume for the population of college students?

Since sampling distribution approx normal, 95% of sample means will be

within ~1.96 x sdev($\frac{-}{x}$) around the mean of the sampling distribution. More generally, generally, $CI = x \pm z^* \times SEM$. Where the value of z^* depends on the confidence level (1.96 for 95%)

mstefan@exseed.ed.ac.uk

Confidence interval

$$CI = \bar{x} \pm (1.96 \times s / \sqrt{n}) \\ = [886355,931155]$$

You are 95% confident that the true population mean is between 886355 and 931155 pixels

OpenIntro Statistics mstefan@exseed.ed.ac.uk

Data: What do I do with it?

The normal distribution & CLT

- Normal distribution is symmetric about the mean
- Area under the curve gives probability
- 68, 95, 99.7% rule • Normalise standard distribution with $z = \frac{x - \mu}{2}$
- Means of random samples from normal distribution are normally distributed around population mean with standard deviation $\frac{\sigma}{\sqrt{n}}$
- Confidence intervals tell you the probability with which you will find the **true population mean** in an interval

When am I allowed to do a z test?

When am I allowed to do a z test?

- The parameter you are testing should be normally distributed.
- It should be possible to estimate the standard deviation accurately.

When am I allowed to do a z test?

- The parameter you are testing should be normally distributed.
- It should be possible to estimate the standard deviation accurately. (This means the sample should be "large enough")

When am I allowed to do a z test?

- The parameter you are testing should be normally distributed.
- It should be possible to estimate the standard deviation accurately. (This means the sample should be "large enough")

What if those assumptions are not met?

When am I allowed to do a z test?

- The parameter you are testing should be normally distributed.
- It should be possible to estimate the standard deviation accurately. (This means the sample should be "large enough")

What if those assumptions are not met? For smaller samples: Do a t test.

The t-distribution

Recall...

- t-distribution has fatter tail than z-distribution to make up for uncertainty in $\boldsymbol{\sigma}$
- Shape of *t*-distribution depends on n. This defines **"degrees of freedom"** (df).

Using the t statistic

Recall: Willerman et al. (1991) measured brain volume (pixel count) of 40 college students by MRI

We had:

Mean=908755 Standard deviation=72282

Should have used t-statistic (instead of z-statistic).

For n = 40, t = 2.02

$$CI = \bar{x} \pm t \times SEM$$

$$\mathsf{CI} = 908\,755 \pm \left(2.02 \times \frac{72282}{40}\right)$$

 $\mathsf{CI} = [905\,104, 912\,405]$

Back to overview

Compare two population means

Example: Are men and women of different height?

Compare two population means

Example: Are men and women of different height?

- Most often used: 2-sample t-test (same idea as 1-sample t-test, except you are comparing difference between means to zero)
- If conditions for t-test are not met: Wilcoxon rank sum test (Mann Whitney U test)
- You can always do: simulation-based test

Idea: Look not at absolute values, but rank of data. Ask the question whether the ranking you see could come about under H_0

Idea: Look not at absolute values, but rank of data. Ask the question whether the ranking you see could come about under H_0

Example: Are men and women in graduate school of different height?

- Collect data in both group.
- Rank all data.
- Compute sum of ranks in each group.
- Look smaller one up in a table.

Table Critical values of the smallest rank sum for the Wilcoxon-Mann-Whitney test

n1 = number of elements in the largest sample;

n₂ = number of elements in the smallest sample.

Level of significance 🛛					Level of significance 🕻						
Two	-sided	0.20	0.10	0.05	0.01	Two-	sided	0.20	0.10	0.05	0.01
One	-sided	0.10	0.05	0.025	0.005	One	sided	0.10	0.05	0.025	0.005
n ₁	n ₂					n ₁	n ₂				
3	2	3	-	-	-	10	6	38	35	32	27
3	3	7	6	-	-	10	7	49	45	42	37
4	2	3	-	-	-	10	8	60	56	53	47
4	3	7	6	-	-	10	9	73	69	65	58
4	4	13	11	10	-	10	10	87	82	78	71
5	2	4	3	-	-	11	1	1	-	-	-
5	3	8	7	6	-	11	2	6	4	3	-
5	4	14	12	11	-	11	3	13	11	9	6
5	5	20	19	17	15	11	4	21	18	16	12
1		1						1			

From http://www.watpon.com/table/wilcoxonmannwhitney.pdf

mstefan@exseed.ed.ac.uk

Discussion

- What are the advantages/disadvantages of using this (rather than a t-test)?
- When is each of those tests appropriate?
- Can I be really cheeky and just do both?

Back to overview

Compare more than two population means

- One explanatory variable: One-way ANOVA
- Multiple explanatory variables: Multifactorial ANOVA
- Assumptions not met: non-parametric alternatives
- You can always do: simulation-based test

3. Compare more than 2 populations – one-way ANOVA

Example: A change in circadian clock (eg. Jet lag) is called a "phase shift", which can be measured by plasma melatonin levels. Campbell and Murphy (1998) reported that the human circadian clock can be reset by exposing the back of the knee to light. Wright and Czeisler (2002) re-examined the phenomenon. 22 participants were divided <u>into three groups</u>: no light (control), bright light to the back of the knee, and bright light to the eyes. Melatonin levels were measured 2 days later. A negative/positive number means a delay/advance of melatonin production compared to undisturbed cycle

12:00 P.M. 6:00 P.M. 12:00 A.M. 6:00 A.M. 12:00 P.M. 6:00 P.M. 12:00 A.M.

How to compare mean phase shift in 3 groups?

Three t-tests??

Multiple comparisons and error rate inflation

Multiple comparisons and error rate inflation

http://www.gs.washington.edu/academics/courses/akev/56008/lecture/lecture10.pdf

Data: What do I do with it?

3. Compare more than 2 populations - one-way ANOVA

Example: 22 participants were divided into three groups: no light (control), bright light to the back of the knee, and bright light to the eyes. Melatonin levels were measured 2 days later. A negative/positive number means a delay/advance of melatonin production compared to undisturbed cycle

ANOVA (Analysis of Variance)

- Compares variances between and within group
- Calculates F-statistic. Always a one-tailed probability distribution.
- Shape defined by 2 degrees of freedom F(m,n)
- Result tells you likelihood of at least one difference between the groups but **not** which/how many groups

 H_0 : There is no difference in phase shift between all three groups

 H_A : There is a difference in phase shift in at least one of the three groups

200 PM 600 PM 1200 AM 600 AM 1200 PM 600 PM 1200 AM

3. Compare more than 2 populations - one-way ANOVA Assumptions

- i. No outliers
- ii. Measurements in all groups are a random sample from the corresponding population
- iii. The variable is normally distributed
- iv. The variance between all groups is equal

Also consider

- **Fixed effect** predefined groups which are of direct interest (e.g. treatment, genotype)
- **Random effect** the groups are randomly sampled from a population (e.g. we want to know if different animal handlers, picked at random, affect animal stress. "Animal handler" is a random effect)
- **Repeated measures** are measurements related (e.g. before and after drug administration)

Note: For 2 groups, an unpaired t-test and one-way ANOVA will give equivalent results

mstefan@exseed.ed.ac.uk

Data: What do I do with it?

3. Compare more than 2 populations – one-way ANOVA

Example: 22 participants were divided into three groups: no light (control), bright light to the back of the knee, and bright light to the eyes. Melatonin levels were measured 2 days later. A negative/positive number means a delay/advance of melatonin production compared to undisturbed cycle

- 1) State hypothesis
- 2) Test assumptions
- 3) Perform test

A	D	C
Control	Knees	Eyes
Y	Y	Y
0.53	0.73	-0.78
0.36	0.31	-0.86
0.20	0.03	-1.35
-0.37	-0.29	-1.48
-0.60	-0.56	-1.52
-0.64	-0.96	-2.04
-0.68	-1.61	-2.83
-1.27		

noose text	
You may either choose a you may choose a test by	test by checking the two option boxes, or name below.
Repeated measures t	est. Values in each row represent matched observations.
Nonperametric test D	on't assume Gaussian distributions.
Test name: One-way or	alysis of variance
ost test	
Test name: No Post Te	t 🗾
	fan 💌
	A:Control 💌 Select
ignificant digits	
Show 4 💌 significan	digits
lutput	
Create a table of desi	riptive statistics for each column
3. Compare more than 2 populations – one-way ANOVA

Example: 22 participants were divided into three groups: no light (control), bright light to the back of the knee, and bright light to the eyes. Melatonin levels were measured 2 days later. A negative/positive number means a delay/advance of melatonin production compared to undisturbed cycle

mstefan@exseed.ed.ac.uk

3. Compare more than 2 populations – one-way ANOVA

Example: 22 participants were divided into three groups: no light (control), bright light to the back of the knee, and bright light to the eyes. Melatonin levels were measured 2 days later. A negative/positive number means a delay/advance of melatonin production compared to undisturbed cycle

12:00 P.M. 6:00 P.M. 12:00 A.M. 6:00 A.M. 12:00 P.M. 6:00 P.M. 12:00 A.M

There is no difference in phase shift between all three groups
H_a: There is a difference in phase shift in <u>at least one</u> of the three groups

Which group/s differ? Follow significant ANOVAs with post-hoc tests

To compare all groups use post-hoc tests

- Various available
- Tukey-Kramer good for equal variances

3. Compare more than 2 populations - one-way ANOVA

Example: 22 participants were divided into three groups: no light (control), bright light to the back of the knee, and bright light to the eyes. Melatonin levels were measured 2 days later. A negative/positive number means a delay/advance of melatonin production compared to undisturbed cycle

2:00 P.M. 6:00 P.M. 12:00 A.M. 6:00 A.M. 12:00 P.M. 6:00 P.M. 12:00 A.F

Choose test					
You may either choose a test by checking the two option boxes, or you may choose a test by name below.					
FRepeated measures test. Values in each row represent matched of	bservations.				
Nonparametric test. Don't assume Gaussian distributions.					
Test name: One-way analysis of variance	•				
Post test					
Test name: Tukey: Compare all pairs of columns.					
Significance level. Alpha = 0.05 (95% confidence intervals)	•				
Control column: A:Control	Select				
Significant digits					
Show 4 💌 significant digits					
Output					
Tukey's Multiple Comparison Test	Mean Diff.	q	Significant? P < 0.05?	Summary	95% CI of diff
Control vs Knees	0.02696	0.1047	No	ns	-0.8987 to 0.9526
Control vs Eyes	1.243	4.824	Yes	**	0.3171 to 2.168
	4.040	4.500			0.0507 . 0.470

3. Compare more than 2 populations - one-way ANOVA

Example: 22 participants were divided into three groups: no light (control), bright light to the back of the knee, and bright light to the eyes. Melatonin levels were measured 2 days later. A negative/positive number means a delay/advance of melatonin production compared to undisturbed cycle

200 P.M. 600 P.M. 1200 A.M. 600 A.M. 1200 P.M. 600 P.M. 1200 A.M.

Table Analyzed	Data 1	Tukey's Multiple Comparison Test	Mean Diff.	q	Significant? P < 0.05?	Summary	95% CI of diff
		Control vs Knees	0.02696	0.1047	No	ns	-0.8987 to 0.9526
One-way analysis of variance		0011101101000					
P value	0.0045	Control vs Eyes	1.243	4.824	Yes		0.31/1 to 2.168
P value summary	**	Knees vs Eyes	1.216	4.569	Yes	*	0.2597 to 2.172
And manager simply different 2 (D x 0.05)	Vee.						

Interpretation and presentation

There was a significant difference in phase shift between groups (p=0.005, F(2,19)=7.3), with the eye group showing a greater phase delay than both other groups (Tukey-Kramer post-hoc test).

Fig 1: Phase shifts after light exposure in 3 groups. Points represent individuals. Mean and 95% Cl error bars. *, p<0.05, **, p<0.01

Number of groups

P value summary

ANOVA Table

Bartlett's test for equal variances

Do the variances differ signif. (P < 0.05)

Bartlett's statistic (corrected)

Treatment (between columns)

Residual (within columns)

1.289

No

7 224

16.64

19

0.4955

Summary

When can we use ANOVA? What does it tell us? How is it related to t tests?

Back to overview

Compare proportions of nominal variables

You are studying development in fruit flies and are interested in a gene that affects wing growth. The gene has two alleles, s (small wings) and W (wildtype). The wildtype allele is dominant. Adult flies carrying two copies of the s have shorter wings than normal flies. This phenotype is well described and easy to measure. However, you suspect that the gene also has a function in early development and that early embryonic development is often disrupted in individuals homozygous for the s allele, meaning many of them never make it to the adult stage.

Here is data from a recent experiment:

Phenotype	number
normal wing length:	318
short wings:	82

Compare proportions of nominal variables

- Most often used: χ^2 ("Chi square") test
- Better for small numbers: Fisher's exact test
- Always works: Simulation-based test

Chi-Square test

Remember all hypothesis tests are the same!

Chi-Square test

Remember all hypothesis tests are the same!

- What is H_0 ? What is H_A ?
- What data would you expect to see if H₀ was true?
- How likely are you to see your data under H₀?

• Table of observed and expected values:

Phenotype	number observed	number expected
normal wing length:	318	300
short wings:	82	100

• Table of observed and expected values:

Phenotype	number observed	number expected
normal wing length:	318	300
short wings:	82	100

• Compute the χ^2 statistic $\sum \frac{(O-E)^2}{E}$

• Table of observed and expected values:

Phenotype	number observed	number expected
normal wing length:	318	300
short wings:	82	100

• Compute the
$$\chi^2$$
 statistic $\sum \frac{(O-E)^2}{E}$

• Determine degrees of freedom (basically, number of categories - 1)

• Table of observed and expected values:

Phenotype	number observed	number expected
normal wing length:	318	300
short wings:	82	100

• Compute the
$$\chi^2$$
 statistic $\sum \frac{(O-E)^2}{E}$

- Determine degrees of freedom (basically, number of categories 1)
- Consult a χ^2 table to get your p-value.

• Table of observed and expected values:

Phenotype	number observed	number expected
normal wing length:	318	300
short wings:	82	100

• Compute the
$$\chi^2$$
 statistic $\sum \frac{(O-E)^2}{E}$

- Determine degrees of freedom (basically, number of categories 1)
- Consult a χ^2 table to get your p-value. In our case: 0.043

Back to overview

Relationships between variables

Answers the questions: Is there a relationship between variables A and B?

5. Relationships between variables

You want to know if two quantitative variables are associated

1) Look at the data

Scatterplot for non-linearity/ non-monotonic / outliers

5. Relationships between variables

Which test?

Correlation	Linear Regression
Degree of linear relationship between two variables	Fits a straight line
Correlation is not causality	Assumes causality
X and Y values can be randomly sampled	Can be used to predict value of Y given X

http://www.biostathandbook.com/linearregression.html

mstefan@exseed.ed.ac.uk

Data: What do I do with it?

December 2016 66 / 82

5. Relationships between variables

Pearson's correlation (Pearson's product moment) - parametric

- Correlation coefficient, $r(-1 \le r \le 1)$
- r² quantifies the amount of variability in one variable accounted for by correlation with the other
- Assumptions:
 - Both variables normally distributed (Very sensitive to outliers!)
 - 2. Both variables continuous
 - 3. Monotonic relationship

Spearman's rank correlation – non-parametric

- OK for non-normal distributions, discrete variables
- Calculates correlation coefficient $-1 \le \rho \le 1$
- Uses ranked data

5. Relationships between variables

Example: Huber et al (2004) asked whether there was an associated between improvements in task performance and the amount of slow wave sleep after learning the task. The data show % for time spend in SWS and % improvement on task from baseline

Presentation

The authors found a significant correlation between %SWS and % improvement (r=0.86, p=0.001, n=10, 95% Cl(0.51, 0.97), Pearson's correlation)

5. Relationships between variables

Linear Regression

- · Finds best-fitting straight line through data
- Minimises residuals to get best fit
- Output of regression
 - Model: y= b₀ + b₁x, intercept and slope constants with p-values
 - Coefficient of determination *r*² : amount of variation explained by regression_
- Assumptions:
 - 1. Predictor (x) variables error free
 - 2. Linearity
 - 3. Constant variance (plot residuals vs x available in most stats packages)
 - 4. Errors of response uncorrelated
 - 5. Normality (but this is a weak requirement). If non-normal, try to transform data (eg. Logarithms)

5. Relationships between variables

Example: rattlesnakes increase their body temperature after a meal. Tattersall et al (2004) asked whether the snakes could control their body temperature after a meal without extrinsic factors such as moving to a sunny spot. They measured body temperature changes after feeding the snakes meals of different sizes

i cin	31263		Linear regress	ion		
neal.size	tempchang	ge	Linear regress	1011		
Y	Y		assumptions (ЭК		
0.0		0.3	assumptions e			
0.0		0.2				
0.0	Be	st-fit	values		1	
12.0		Slop	90	0.02738 ± 0.003447		
14.5		Y-in	tercept when X=0.0	0.3196 ± 0.09098	1	Slope of straight line
23.3		X-int	tercept when Y=0.0	-11.67		
27.1		1/sl	ope	36.52	1	
29.3	95	% Cc	onfidence Intervals			
20.8		Slope		0.02004 to 0.03473		CL of slone
22.2		V-intercent when X=0.0		0 1257 to 0 5134	4	
23.4		X-int	tercent when Y=0.0	-24.95 to -3.716		
36.3	Go	odne	vee of Fit	24.0010 0.110	-	
34.7		2	100 UT IL	0.8080		Amount of variation accounted
31.6		- -		0.1014		Amount of variation accounted
29.4	le .	-loop	similarity on acc?	0.1314		for by regression
30.9	IS	s slope significantly non-zero?		00.44	-	IOI BY TEGRESSION
50.4	_	F	0.0.1	63.11	-	
	_	DEn	, DFd	1.000, 15.00	-	 Significance of relationship
		P va	lue	< 0.0001	N-	
		Devi	iation from zero?	Significant		

mstefan@exseed.ed.ac.uk

5. Relationships between variables

Example: rattlesnakes increase their body temperature after a meal. Tattersall et al (2004) asked whether the snakes could control their body temperature after a meal without extrinsic factors such as moving to a sunny spot. They measured body temperature changes after feeding the snakes meals of different sizes.

ICICIIL	31263	1	i-m
meal.size	tempchange	Linear regr	ession
Y	Y	assumption	ns OK
0.0	0.3	ussumption	15 010
0.0	0.0		
0.0	Best-fit values		
12.0	Slope		0.02738 ± 0.003447
14.5	Y-intercept v	vhen X=0.0	0.3196 ± 0.09098
23.3	X-intercept v	/hen Y=0.0	-11.67
27.1	1/slope		36.52
29.3	95% Confidence	Intervals	
20.8	Slope		0.02004 to 0.03473
22.2	Y-intercept v	vhen X=0.0	0.1257 to 0.5134
23.4	X-intercept v	/hen Y=0.0	-24.95 to -3.716
36.3	Goodness of Fit		
34.7	r ²		0.8080
31.6	Sy.x		0.1914
29.4	Is slope signific:	antly non-zero?	
30.9	F		63.11
50.4	DFn, DFd		1.000, 15.00
	P value		< 0.0001
	Deviation fro	m zero?	Significant

Presentation

Meal size significantly predicted temperature change in rattlesnakes (b=0.027, 95% CI[0.020, 0.034], F(1,15) =63.1), and accounted for 81% of the variance in temperature change

Fig 1. Temperature change was dependent on meal size. Points represent individual snakes. Regression line (solid) and 95% CI lines (dotted) indicate.

Summary

What do these tests tell us? What don't they tell us?

Back to overview

Outline

- Describing your data set
- 2 Visualising your dataset
- 3 All hypothesis tests are the same . . .
- 4 . . . but there are different hypothesis tests
- 5 Sample size and experimental design

Sharing your results

Experimental design & sample size

mstefan@exseed.ed.ac.uk

Data: What do I do with it?

Sample size and experimental design

Experimental design & sample size

http://www.youtube.com/watch?v=0R5Zscd_Mp8

mstefan@exseed.ed.ac.uk

Data: What do I do with it?

December 2016 75 / 82

Experimental design & sample size

http://www.youtube.com/watch?v=0R5Zscd_Mp8

mstefan@exseed.ed.ac.uk

Data: What do I do with it?

December 2016 76 / 82

Sample size and experimental design

Experimental design & sample size

http://www.youtube.com/watch?v=0R5Zscd_Mp8

mstefan@exseed.ed.ac.uk

Data: What do I do with it?

December 2016 77 / 82

Experimental design & sample size

How big should n be? Too many subjects: expensive, unethical Too few subjects: increased likelihood of false negative (type II) error

mstefan@exseed.ed.ac.uk

Data: What do I do with it?

December 2016 78 / 82

Experimental design & sample size

Requirements for samples size calculations:

- 1. Significance level (α, usually 0.05)
- Power: probability of detecting an existing effect. Usually >80
- 3. Effect size

Specific formula for sample size calculation depends on test used (distribution)

http://rpsychologist.com/d3/NHST/

See

- Dell et al., (2002) Sample size determination. ILAR J. 43(4): 207–213.
- Power calculation software: G*Power

(http://www.gpower.hhu.de /en.html)

Outline

- 1) Describing your data set
- 2 Visualising your dataset
- 3 All hypothesis tests are the same . . .
- 4 . . . but there are different hypothesis tests
- Sample size and experimental design
- 6 Sharing your results

Sharing your results - good practice

Sharing your results - good practice

- Share your raw data (e.g. by using a repository)
- Be clear about tests used, assumptions made etc.
- Use scripting rather than point-and-click software
- Share your analysis code
- Make data analysis plan before conducting experiments

• . . .

Thank you

https://xkcd.com/552/